Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system.
نویسندگان
چکیده
The accuracy of a computerized metabolic system, using inspiratory and expiratory methods of measuring ventilation, was assessed in eight male subjects. Gas exchange was measured at rest and during five stages on a cycle ergometer. Pneumotachometers were placed on the inspired and expired side to measure inspired (VI) and expired ventilation (VE). The devices were connected to two systems sampling expired O(2) and CO(2) from a single mixing chamber. Simultaneously, the criterion (Douglas bag, or DB) method assessed VE and fractions of O(2) and CO(2) in expired gas (FE(O(2)) and FE(CO(2))) for subsequent calculation of O(2) uptake (VO(2)), CO(2) production (VCO(2)), and respiratory exchange ratio. Both systems accurately measured metabolic variables over a wide range of intensities. Though differences were found between the DB and computerized systems for FE(O(2)) (both inspired and expired systems), FE(CO(2)) (expired system only), and VO(2) (inspired system only), the differences were extremely small (FE(O(2)) = 0.0004, FE(CO(2)) = -0.0003, VO(2) = -0.018 l/min). Thus a computerized system, using inspiratory or expiratory configurations, permits extremely precise measurements to be made in a less time-consuming manner than the DB technique.
منابع مشابه
Response of Maximum Inspiratory Pressure and Functional Capacity to Positive End-Expiratory Pressure Device after Valvular Heart Surgery
Background: Pulmonary complications following valvular heart surgery are common and contribute to increased duration of hospital stay, rate of morbidity, and mortality. The purpose of the present study was to investigate the response of maximum inspiratory pressure and functional capacity to Positive End-Expiratory Pressure device in patients who underwent valvular hea...
متن کاملConvective exchange between the nose and the atmosphere.
It is generally accepted that there is little rebreathing of gas exhaled through the nose. A detailed physical model system has been used to quantify and identify the mechanisms responsible for this phenomenon. By the use of a cast of the upper respiratory tract and oscillating flows with a Reynolds number of 500 and nondimensional frequency of 1.6, corresponding to quiet tidal breathing throug...
متن کاملEffects of inverse ratio ventilation versus positive end-expiratory pressure on gas exchange and gastric intramucosal PCO(2) and pH under constant mean airway pressure in acute respiratory distress syndrome.
BACKGROUND In patients with acute respiratory distress syndrome, whether inverse ratio ventilation differs from high positive end-expiratory pressure (PEEP) for gas exchange under a similar mean airway pressure has not been adequately examined. The authors used arterial oxygenation, gastric intramucosal partial pressure of carbon dioxide (PiCO(2)), and pH (pHi) to assess whether pressure-contro...
متن کاملPositive end-expiratory pressure during mechanical ventilation and respiratory support in newborns and children
Positive end-expiratory pressure (PEEP) is used during non-invasive and invasive ventilation of newborns, infants and children. PEEP improves gas exchange by increasing the functional residual capacity, reducing respiratory effort, lowering requirements for respiratory mixture oxygen, and enabling a decrease in the peak inspiratory pressure (PIP) without decreasing the mean airway pressure. Its...
متن کاملEffects of short term high frequency negative pressure ventilation on gas exchange using the Hayek oscillator in normal subjects.
BACKGROUND The Hayek oscillator is a negative pressure cuirass that can operate at a range of frequencies to provide ventilation, and is a technique which could potentially be used on a general ward. This study examined the effect of different frequencies and different ranges of inspiratory and expiratory pressures on gas exchange, respiratory rate, and blood pressure in normal subjects. METH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2001